Fullerene-Structured MoSe2 Hollow Spheres Anchored on Highly Nitrogen-Doped Graphene as a Conductive Catalyst for Photovoltaic Applications
نویسندگان
چکیده
A conductive catalyst composed of fullerene-structured MoSe2 hollow spheres and highly nitrogen-doped graphene (HNG-MoSe2) was successfully synthesized via a wet chemical process. The small molecule diethylenetriamine, which was used during the process, served as a surfactant to stabilize the fullerene-structured MoSe2 hollow spheres and to provide a high content of nitrogen heteroatoms for graphene doping (ca. 12% N). The superior synergistic effect between the highly nitrogen-doped graphene and the high surface-to-volume ratio MoSe2 hollow spheres afforded the HNG-MoSe2 composite high conductivity and excellent catalytic activity as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel measurements. A dye-sensitized solar cell (DSSC) prepared with HNG-MoSe2 as a counter electrode exhibited a conversion efficiency of 10.01%, which was close to that of a DSSC with a Pt counter electrode (10.55%). The synergy between the composite materials and the resulting highly efficient catalysis provide benchmarks for preparing well-defined, graphene-based conductive catalysts for clean and sustainable energy production.
منابع مشابه
Adsorption of Gas Molecules on Graphene Doped with Mono and Dual Boron as Highly Sensitive Sensors and Catalysts
First-principle calculations have been investigated to study the adsorption of the molecules (SO2, CO, NH3, CO2, NO2, and NO) on the surface of mono boron (B) B-doped and dual B-doped graphene sheets to explore their potential applications as sensors. Our findings indicate that the adsorption of (CO and NH3) on B-doped graphene and (CO and ...
متن کاملHollow nitrogen-doped carbon spheres as efficient and durable electrocatalysts for oxygen reduction.
Hollow nitrogen-doped carbon spheres (HNCSs) were prepared by a facile method as non-precious catalysts for the oxygen reduction reaction (ORR). The HNCS catalysts exhibited ORR activity comparable with a commercial Pt/C catalyst and superior stability in alkaline electrolyte medium.
متن کاملCo3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction
This study describes a facile and effective route to synthesize hybrid material consisting of Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide (Co3O4/N-rGO) as a high-performance tri-functional catalyst for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and H2O2 sensing. Electrocatalytic activity of Co3O4/N-rGO to hydrogen peroxide reduction was tested by ...
متن کاملPreparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts
Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...
متن کاملInteraction Induced High Catalytic Activities of CoO Nanoparticles Grown on Nitrogen-Doped Hollow Graphene Microspheres for Oxygen Reduction and Evolution Reactions
Nitrogen doped graphene hollow microspheres (NGHSs) have been used as the supports for the growth of the CoO nanoparticles. The nitrogen doped structure favors the nucleation and growth of the CoO nanoparticles and the CoO nanoparticles are mostly anchored on the quaternary nitrogen doped sites of the NGHSs with good monodispersity since the higher electron density of the quaternary nitrogen fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015